

CONCOURS D'ADMISSION 2018 Sessi

Session d'automne

FILIÈRE UNIVERSITAIRE INTERNATIONALE

MATHEMATICS

(Duration: 2 hours)

The three parts (Exercises 1 and 2, Problem) are independent.

The use of computing devices is not allowed

* * *

Exercise 1

Let a and b be two real numbers with a < b and let f be a differentiable function from [a,b] to \mathbb{R} such that f(a) = f(b) = 0. We assume that f' is bounded on [a,b] and let $K = \sup_{t \in [a,b]} |f'(t)|$.

1.1 Show that one has

$$\forall t \in [a, b] \colon |f(t)| \le K(t - a) \quad \text{and} \quad \forall t \in [a, b] \colon |f(t)| \le K(b - t). \tag{1}$$

- 1.2 Compute $\int_a^{(a+b)/2} (t-a)dt$.
- 1.3 Using the previous questions, show that one has

$$\left| \int_{a}^{b} f(t)dt \right| \le K \frac{(b-a)^{2}}{4}.$$

EXERCISE 2

We denote by $\mathcal{M}_3(\mathbb{R})$ the vector space of the real 3×3 matrices. We consider the following four matrices

$$A = \begin{pmatrix} -2 & 0 & 4 \\ 0 & 1 & 0 \\ -2 & 0 & 4 \end{pmatrix}, \ P = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

2.1 Let $B \in \mathcal{M}_3(\mathbb{R})$. Show that the set

$$C(B) = \{ M \in \mathcal{M}_3(\mathbb{R}) \colon BM = MB \}$$

is a linear subspace of $\mathcal{M}_3(\mathbb{R})$.

- **2.2** Determine C(D).
- **2.3** Compute the products PQ and PDQ.
- **2.4** Let Φ_P the map from $\mathcal{M}_3(\mathbb{R})$ to $\mathcal{M}_3(\mathbb{R})$ which associates to any matrix N the matrix $P^{-1}NP$. The map Φ_P is a linear map from $\mathcal{M}_3(\mathbb{R})$ to $\mathcal{M}_3(\mathbb{R})$, the proof of this point is not asked for. Determine the composition product $\Phi_{P^{-1}} \circ \Phi_P$ which associates to any matrix $N \in \mathcal{M}_3(\mathbb{R})$ the matrix $\Phi_{P^{-1}}(\Phi_P(N))$.
- 2.5 By considering the image of $\mathcal{C}(A)$ by Φ_P and using the previous questions, determine the dimension of $\mathcal{C}(A)$.

PROBLEM

The aim of the problem is to study the non-linear recurrence sequence $(u_n)_{n\geq 0}$ defined by

$$u_0 = 0, u_1 = L \text{ and, for } n \ge 0: u_{n+2} = \sqrt{u_{n+1}} + \sqrt{u_n},$$
 (2)

where L is a positive real number. We denote by m the minimum of the two numbers 1 and L and by M the maximum of those two numbers.

In Part A, we study the first properties of the sequence $(u_n)_{n\geq 0}$; in Part B, which is independent of Part A, we study an auxiliary linear recurrence sequence and in Part C we end the study of the sequence $(u_n)_{n\geq 0}$.

PART A, First properties of the sequence $(u_n)_{n\geq 0}$

- **A.1** Show that for $n \ge 1$, one has $m \le u_n \le 4M$.
- **A.2** Assuming that the sequence $(u_n)_{n>0}$ converges, find the value of its limit.

PART B, An auxiliary linear recurrence sequence

In this part, K denotes a real number in the interval (0,1/2).

- **B.1** Let f be the quadratic polynomial defined by $f(x) = x^2 Kx K$. Compute f(-1), f(0) and f(1) and show that f has two real roots (or in other words, the equation f(x) = 0 has two real solutions), which are denoted as c < C.
- **B.2** Let H be a positive number. We consider a sequence $(v_n)_{n>0}$ satisfying

$$0 \le v_0 \le H$$
, $0 \le v_1 \le HC$ and, for $n \ge 0$: $v_{n+2} = K(v_{n+1} + v_n)$. (3)

Show that for any $n \geq 0$ one has $0 \leq v_n \leq HC^n$.

B.3 Show that the sequence $(v_n)_{n\geq 0}$ converges.

PART C, End of the study of the sequence $(u_n)_{n>0}$

C.1 Show that for $n \ge 0$ one has

$$|u_{n+2} - 4| \le \frac{|u_{n+1} - 4|}{\sqrt{u_{n+1}} + 2} + \frac{|u_n - 4|}{\sqrt{u_n} + 2}.$$
 (4)

- C.2 Let $K = 1/(\sqrt{m}+2)$ and $(w_n)_{n\geq 0}$ be a linear recurrence sequence such that $w_0 \geq 4$, $w_1 \geq |L-4|$ and, for $n\geq 2$: $w_{n+2}=K(w_{n+1}+w_n)$. Show that for any $n\geq 0$, one has $|u_n-4|\leq w_n$.
- C.3 Using the previous questions, show that the sequence $(u_n)_{n\geq 0}$ converges.

