QCM (Dara)

- **1.** Mr. and Mrs. Brown have two children, boy or girl. The probabilities that they have a son or a daughter are equal. Find probability that Mr. and Mrs. Brown have two sons, knowing that one of them is a boy.
 - a. 1/4
 - b. 1/2
 - c. 1/3
 - d. a, b, and c are not the answer

Prove: There are 4 configurations possible (S, S), (S, D), (D, S), (D, D). Note: S for the event of "Son" and D for the event of "Daughter". There are 3 configurations that one of them is a boy: (S, S), (S, D), (D, S). Thus, the probability that that Mr. and Mrs. Brown have two sons, knowing that one of them is boy is 1/3.

- **2.** Tom and his 3 friends, who were born in the same mouth of October have a small birthday party in his house. Find probability that at last two of them we were born in the same day.
 - a. 0.016
 - b. 0.5
 - c. 0.002
 - d. a, b, and c are not the answer

Prove: Suppose that P_n is probability that at lest two of n people were born in the same day $(n \le 31)$. That probability is

$$P_n = 1 - \frac{31 \times 30 \times \dots \times (31 - n + 1)}{(31)^n}$$

Thus $P_4 = 0.182$

- 3. Let $R_{\theta} = \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{pmatrix}$ be a rotation matrix that belongs to $\mathcal{M}_2(\mathbb{R})$. Suppose $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$,
 - a. $Sp(R_{\theta}) = \{-1, 1\}$
 - b. $Sp(R_{\theta}) = \emptyset$
 - c. $Sp(R_{\theta}) = \{1\}$
 - d. $Sp(R_{\theta}) = \mathbb{R}$

Prove: The characteristic polynomial of R_{θ} is

$$P_{\theta}(X) = X^2 - 2\cos(\theta)X + 1 = \left(X - \cos(\theta)\right)^2 + \sin^2(\theta)$$

This polynomial $P_{\theta}(X)$ doesn't have real roots for $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$. Thus, $Sp(R_{\theta}) = \emptyset$ for $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$ $(R_{\theta} = \pm Id \text{ for } \theta \in \pi\mathbb{Z})$.

- **4.** Let f be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is divisible by 5 for every integer k.

 - a. All coefficients of *f* are divisible by 5
 b. At last one of coefficients of *f* are not divisible by 5
 c. *f* has real roots divisible by 5
 d. a, b and c are not true

Prove: Let $f(x) = ax^2 + bx + c$. For x = 0, 5|f(0) = c. For $x = \pm 1$, we obtain that 5|f(1) = a + b + c and 5|f(-1) = a - b + c. Then 5|f(1) + f(-1) - 2f(0) = 2a and 5|f(1) - f(-1) = 2b. Thus all coefficients of f are divisible by 5. We don't have enough information to answer questions "c".

- **5.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose that for any c > 0, the graph of f can be moved to the graph of cf using only a translation or a rotation. This imply that:
 - a. f(x) = ax + b for some real numbers a and b.
 - b. *f* is not an affine function.
 - c. *f* is a constant function.
 - d. a. b and c are not true.

Prove: The function $f(x) = e^x$ also has this property $(ce^x = e^{x + \ln(c)})$

6. Calculate

$$I = \lim_{n \to +\infty} \frac{1}{n} \sqrt[n]{\frac{(2n)!}{n!}}$$

- a. 4/e
- b. *e*
- d. +∞

Prove: We have

$$\frac{1}{n} \sqrt[n]{\frac{(2n)!}{n!}} = \exp\left(\frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right)\right)$$

For all $n \in \mathbb{N}^*$,

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right) = \int_{0}^{1} \ln(1+t) \, dt = 2 \ln 2 - 1$$

Thus I = 4/e

7. Let $f: [0,1] \to \mathbb{R}$,

$$x \mapsto f(x) = \begin{cases} xE\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

a.
$$\forall x \in [0, 1], f(f(x)) = f(x) + 1$$

b.
$$\forall x \in [0,1], f(f(x)) = f(x)$$

c.
$$\forall x \in [0,1], f(f(x+1)) = f(x)$$

d. a, b and c are not true

Prove:

• If
$$x = 0$$
, $f(f(x)) = f(x)$ or $f(f(x+1)) = f(x)$

• If
$$x \in [1/2, 1]$$
, so $1 \le 1/x < 2 \implies E(1/x) = 1$

$$f(x) = xE\left(\frac{1}{x}\right) = x$$
, $f(f(x)) = x$

- If $x \in]0, 1/2]$, since $1/x 1 < E(1/x) \le 1/x$, so $1/2 < f(x) \le 1$. Thus f(f(x)) = f(x)
- **8.** Determine, $n \in \mathbb{N}^*$

$$\lim_{n\to+\infty}\int_0^1 \sqrt{1-x^n}\,dx$$

- a. +∞
- b. 1
- c. 0
- d. a, b and c are not answers

Prove:

$$\left| \int_0^1 \sqrt{1 - x^n} \, dx - 1 \right| = \left| \int_0^1 \frac{x^n}{\sqrt{1 + x^n - 1}} \, dx \right| \le \int_0^1 x^n \, dx = \frac{1}{n + 1} \underset{n \to +\infty}{\longrightarrow} 0$$

9. Let
$$M$$
 be a $n \times n$ matrix, $M = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ -1 & 0 & 0 & \cdots & -1 & 2 \end{pmatrix}$

- a. *M* is an inverse matrix
- b. *M* is not an inverse matrix
- c. *M* is a nilpotent matrix
- d. a, b and c are not true.

Prove: Let x is a vector of n elements, $x = (x_1, x_2, ..., x_n)^T$. Since $x^T M x = \sum_{k=1}^n (x_{k+1} - x_k)^2 \ge 0$ where $x_1 = x_{n+1}$. Thus M is a positive definite matrix, so M is inversible. M cannot be a nilpotent matrix.

- **10.** Let E, F and G be three vector space in \mathbb{K} , $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$. Which of the following proposition is not true:
 - a. $Ker(gof) = f^{-1}(Ker(g))$
 - b. $Ker(gof) \supset Ker(f)$
 - c. Im(gof) = g(Im(f))
 - d. $Im(gof) \supset Im(g)$

Prove: For all x of E:

•
$$x \in Ker(gof) \Leftrightarrow (gof)(x) = 0 \Leftrightarrow f(x) \in Ker(g) \Leftrightarrow x \in f^{-1}(Ker(g))$$

 $Ker(gof) = f^{-1}(Ker(g))$

- Since Ker(g) ⊃ {0}, Ker(gof) = f⁻¹(Ker(g)) ⊃ f⁻¹({0}) = Ker(f)
 Im(gof) = (gof)(E) = g(f(E)) = g(Im(f))
 Since Im(f) ⊂ F, Im(gof) = g(Im(f)) ⊂ g(F) = Im(g)